Self-Assembly of Gold Nanoparticles Grafted with Amphiphilic Supramolecular Block Copolymers

 Engineering, University of Connecticut, Storrs, CT 06269, United State Emails: jie.he@uconn.edu (JH)

1. Calculation of Grafting density

The polymer grafting density of PGNPs was determined by following equation:

$$
\frac{\text { Polymer Chain }}{N P s}=\frac{\text { Numbers of polymer }}{\text { Surface area of an AuNP } \times \text { Number of AuNPs }}=\frac{\frac{m_{\text {poly }}}{M_{\text {poly }}} \times N_{A}}{S_{N P} \times \frac{m_{A u} / M_{A u}}{\rho_{A u} \times \frac{V_{N P}}{M_{A u}}}}
$$

where $\mathrm{m}_{\text {poly }}$ and $\mathrm{m}_{A u}$ represent the mass of polymers on the AuNPs and AuNPs, respectively. $\mathrm{M}_{\text {poly }}$ and $\mathrm{M}_{A u}$ are the molecular weight of polymer and AuNPs; $\rho_{A u}$ is the density of $\mathrm{Au} ; \mathrm{S}_{N P}$ is the surface area of $\mathrm{AuNPs} ; \mathrm{V}_{N P}$ is the volume of the single nanoparticles.
The mass of polymers on the surface of the AuNPs was determined by thermogravimetric analysis. As shown Figure S12b, the mass loss for $\mathrm{PS}_{182}-\mathrm{DPA}-\mathrm{Cu}^{2+}$ is $99.2 \mathrm{wt} \%$ after thermal decomposition at $700^{\circ} \mathrm{C}$.

To calculate the grafting density of PS_{182}-DPA-Cu ${ }^{2+}$ modified 14 nm AuNPs, 2.61 mg of $\mathrm{PS}_{182}-\mathrm{DPA}^{2}-\mathrm{Cu}^{2+}-\mathrm{AuNPs}^{2}$ and unmodified AuNPs were carried out for TGA. The weight loss of P4-Cu ${ }^{2+}$-AuNPs and unmodified AuNPs is $17.3 \mathrm{wt} \%$ and $0 \mathrm{wt} \%$, at $700^{\circ} \mathrm{C}$ respectively. Thus, it gives the weight ratio of $\mathrm{PS}_{182}-\mathrm{DPA}-\mathrm{Cu}^{2+}$ is $(17.3 \mathrm{wt} \%-0 \mathrm{wt} \%) / 99.16 \mathrm{wt} . \%=17.4 \mathrm{wt} \%$. The $\mathrm{m}_{\text {poly }}$ of $\mathrm{PS}_{182}-\mathrm{DPA}-$ Cu^{2+} is 0.46 mg and the $\mathrm{m}_{A u}$ of AuNPs is 2.15 mg . The $\mathrm{S}_{N P}$ is $615 \mathrm{~nm}^{2}$; The $\mathrm{M}_{A u}$ is $196 \mathrm{~g} \mathrm{~mol}^{-1}$; The $\rho_{A u}$ is $19.3 \mathrm{~g} \mathrm{~cm}^{-3}$ and V_{NP} is 1.436 $\times 10^{-24} \mathrm{~m}^{3}$.

$$
\text { Based on the equation of the grafting density }=\frac{\frac{0.46 \mathrm{mg}}{19452.3 \mathrm{gmol}}{ }^{-1} \times 6.02 \times 10^{23} \mathrm{~mol}^{-1}}{615 \mathrm{~nm}^{2} \times \frac{\mathrm{l}^{-15 \mathrm{mg} / 196 \mathrm{~g} \mathrm{~mol}^{-1}}}{19.3 \mathrm{~g} \mathrm{~cm}}{ }^{-3} \times \frac{1.436 \times 10^{-24 \mathrm{~m}^{3}}}{196 \mathrm{gmol}^{-1}}}=0.31 \text { chains } / \mathrm{nm}^{2}
$$

Similarly, the grafting density of linear BCP of $\mathrm{PDMA}_{52}-b-\mathrm{PS}_{158}-\mathrm{Cu}^{2+}$ modified AuNPs is 0.79 chains $/ \mathrm{nm}^{2}$.
For DLS, the grafting density is determined by the differences of hydrodynamic radius of AuNPs before and after polymer modification. For example, the hydrodynamic radius of unmodified AuNPs and $\mathrm{PS}_{182}-\mathrm{DPA}-\mathrm{Cu}^{2+}$ modified AuNPs are $\mathrm{R}=7.0 \mathrm{~nm}$ and $\mathrm{R}+\mathrm{L}=12.82$ nm , respectively. Therefore, the thickness of polymer is $\mathrm{L}=5.82 \mathrm{~nm}$. The volume of grafted polymers ($V_{\text {poly }}$) is calculated to be $\sim 7.4 \mathrm{~K}$ nm^{3} using the equation of

$$
V_{\text {poly }}=\frac{4 \pi}{3}\left((R+L)^{3}-R^{3}\right)
$$

The average number of polymer chains on each AuNP is calculated to be ~ 197 chains/AuNP from the equation of

$$
\mathrm{N}_{\text {poly }}=\frac{\rho_{p s} V_{p o l y} N_{A v}}{M n}
$$

where $\rho_{p s}$ is the density of PS, we assume that is close to bulk density of PS of $1.05 \mathrm{~g} \mathrm{~cm}^{-3} . N_{A v}$ is Avogadro number.
The grafting density is calculated to be ~ 0.32 chains $\cdot \mathrm{nm}^{-2}$ by the equation of

$$
\sigma=\frac{N_{\text {poly }}}{4 \pi R^{2}}
$$

For the grafting density to other PGNPs were summarized in Table S1.
(a)
(b)

PDMA- $b-$ PS-DPA
PDMA- \boldsymbol{b}-PS-DPA-Cu ${ }^{2+}$
Ligand exchange $\underbrace{\text { Au }}$

Scheme S1. Scheme of surface modification with (a) "V-shape" block copolymers and (b) linear BCPs on AuNPs.
(a)

Figure S1. Synthetic routes of (a) BTCPA-DPA; (b) PS-DPA, PS-DPA-Cu ${ }^{2+}$; (c) linear BCP of PDMA- b-PS-DPA and PDMA- b-PSCu^{2+}.

Figure S2. The Chemical structure and ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PS}_{62}-\mathrm{DPA}$ in CDCl_{3}.

Figure S3. Chemical structure and ${ }^{1} \mathrm{H}$ NMR spectra of BCTPA-DPA, PS-DPA with different molecular weight in CDCl_{3}.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{PDMA}_{52}-\mathrm{DPA}$ and linear BCPs of PDMA- b-PS with different molecular weight in CDCl_{3}. * is the solvent residual of hexane.
(a)

(b)

Figure S5. Synthetic routes of (a) pyridine-maleimide and (b) PDMA-Py.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of MI-Py, PDMA and PDMA-Py in CDCl_{3}.
(a)

(b)

(c)

Figure S7. GPC elution curve of (a) homopolymers of PS-DPA, (b) linear BCPs of PDMA-b-PS-DPA and (c) PDMA-Py in DMAc.

Figure S8. (a) Optical image to show micellar solution in selective solvent (volume ratio of $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}=7: 3$) formed by linear BCPs of $\mathrm{PDMA}_{52}-b-\mathrm{PS}_{53}-\mathrm{Cu}^{2+}, \mathrm{PDMA}_{52}-b-\mathrm{PS}_{76}-\mathrm{Cu}^{2+}, \mathrm{PDMA}_{52}-b-\mathrm{PS}_{105}-\mathrm{Cu}^{2+}$ and $\mathrm{PDMA}_{52}-b-\mathrm{PS}_{158}-\mathrm{Cu}^{2+}$ (left to right); (b) Hydrodynamic diameter of $\mathrm{PS}_{62}-\mathrm{DPA}-\mathrm{Cu}^{2+}-\mathrm{Py}-\mathrm{PDMA}_{42}$ (black) and $\mathrm{PDMA}_{52}-b-\mathrm{PS}_{53}-\mathrm{Cu}^{2+}$ (red) measured in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}=7: 3$ by dynamic light scattering;

Figure S9. (a)(c)(e) TEM images to show the spherical micelles prepared from VBCPs and (b)(d)(f) their size distributions were measured from TEM images by averaging more than 100 particles.

Figure S10. (a) SEM image and (b) histogram of the average diameter of citrate-capped AuNPs.

Figure S11. (a) (c) Optical images and (b) (d) UV-vis spectra to show the dispersity of PGNPs with PS ${ }_{182}-\mathrm{DPA}^{2}-\mathrm{Cu}^{2+}-\mathrm{Py}^{2}-\mathrm{PDMA}_{42}$ and PS_{182}-DPA- Cu^{2+}, respectively, in different organic solvents including, tetrahydrofuran (THF), dimethylformamide (DMF), dichloromethane (DCM), toluene, dimethylacetamide (DMAc), and anisole.

Figure S12. TGA thermograms of (a) $\mathrm{PDMA}_{52}-b-\mathrm{PS}_{158}$, AuNPs and PGNPs of $\mathrm{PDMA}_{52}-b-\mathrm{PS}_{158}-\mathrm{Cu}^{2+}$; (b) PS_{182}-DPA, AuNPs and PGNPs of PS_{182}-DPA- Cu^{2+}.

Table S1. The grafting density of polymer grafted AuNPs

Sample name	Radius from DLS (nm)	$\begin{gathered} \sigma\left(\text { Chains } / \mathbf{n m}^{2}\right) \\ (\text { DLS }) \end{gathered}$	$\begin{gathered} \sigma\left(\text { Chains } / \mathbf{n m}^{2}\right) \\ \text { (TGA) } \end{gathered}$
AuNPs	7.0	-	-
$\mathrm{Au}-\mathrm{PS}_{62}-\mathrm{DPA}-\mathrm{Cu}^{2+}$	11.7	0.46	-
$\mathrm{Au}-\mathrm{PS}_{89}-\mathrm{DPA}-\mathrm{Cu}^{2+}$	11.8	0.38	-
$\mathrm{Au}-\mathrm{PS}_{139}-\mathrm{DPA}-\mathrm{Cu}^{2+}$	12.3	0.32	
$\mathrm{Au}-\mathrm{PS}_{182}-\mathrm{DPA}-\mathrm{Cu}^{2+}$	12.8	0.32	0.31
$\mathrm{Au}-\mathrm{PDMA}_{52}-b-\mathrm{PS}_{53}-\mathrm{Cu}^{2+}$	12.6	0.62	-
$\mathrm{Au}-\mathrm{PDMA}_{52}-b-\mathrm{PS}_{76}-\mathrm{Cu}^{2+}$	12.9	0.55	-
$\mathrm{Au}-\mathrm{PDMA}_{52}-b-\mathrm{PS}_{105}-\mathrm{Cu}^{2+}$	13.2	0.49	-
$\mathrm{Au}-\mathrm{PDMA}_{52}-b-\mathrm{PS}_{158}-\mathrm{Cu}^{2+}$	14.5	0.51	0.79

Figure S13. Histogram of interparticle distance for (a) layered assemblies from PGNPs of $\mathrm{PS}_{182}-\mathrm{DPA}-\mathrm{Cu}^{2+}-\mathrm{Py}^{2}-\mathrm{PDMA}_{42}$; (b) fractcal particles from PGNPs of PDMA ${ }_{52}-b-\mathrm{PS}_{158}-\mathrm{Cu}^{2+}$.

Figure S14. SEM images to show layer assemblies from $\mathrm{PS}_{182}-\mathrm{DPA}^{2}-\mathrm{Cu}^{2+}-\mathrm{Py}^{2}-\mathrm{PDMA}_{42}$ (a) before and (b) after doing the dialysis against to water, respectively and the (c) TEM images after the dialysis.

Figure S15. Represent SEM images to show the (a) (b) fractal particle assemblies were assembled from PGNPs with PS $62-$ DPA- $\mathrm{Cu}^{2+}-$ Py-PDMA 42 , (c) (d) vesicles were assembled from PGNPs with $\mathrm{PS}_{89}-\mathrm{DPA}-\mathrm{Cu}^{2+}-\mathrm{Py}-\mathrm{PDMA}_{42}$, (e) (f) $\mathrm{PS}_{139}-\mathrm{DPA}^{2}-\mathrm{Cu}^{2+}-\mathrm{Py}^{2}-\mathrm{PDMA}_{42}$, and (g) (h) layer assemblies from PGNPs with $\mathrm{PS}_{182}-\mathrm{DPA}-\mathrm{Cu}^{2+}-\mathrm{Py}-\mathrm{PDMA}_{42}$.

Figure S16. Represent TEM and SEM images to show fractal particle assemblies were assembled from PGNPs with (a) and (e) PDMA P2 $^{-}$ $b-\mathrm{PS}_{53}-\mathrm{Cu}^{2+}$; (b) and (f) $\mathrm{PDMA}_{52}-b-\mathrm{PS}_{76}-\mathrm{Cu}^{2+}$; (c) and (g) $\mathrm{PDMA}_{52}-b-\mathrm{PS}_{105}-\mathrm{Cu}^{2+}$; (d) and (f) $\mathrm{PDMA}_{52}-b-\mathrm{PS}_{158}-\mathrm{Cu}^{2+}$.

Figure S17. (a) UV-vis spectra to show the plasmonic peak changes of the assemblies from PGNPs with $\mathrm{PDMA}_{52}-b-\mathrm{PS}_{158}-\mathrm{Cu}^{2+}$ before (black) and after (red) in addition of 10 uL of 1 mM HCl aqueous solution to 1 mL of solution after 20 mins. And the representative SEM images to show the morphology changes (b) before and (c) after the addition of HCl .

Figure S18.UV-vis spectra to show the plasmonic peak changes of the assemblies from $\mathrm{PS}_{182}-\mathrm{DPA}^{2}-\mathrm{Cu}^{2+}-\mathrm{Py}^{2}-\mathrm{PDMA}_{42}$ before (black) and after (red) when adding $5 \mu \mathrm{~L}$ of pyridine to 1 mL of solution after 20 min .

Fitting Model for scattering results

Scattering intensity, $I(q)$, of a particulate system can be expressed by the multiplication of volumetric concentration, $c_{l p}$, a contrast factor, $\Delta \rho^{2}$, form factor $P(q)$ and a structure factor $S(q)$ as

$$
I(q) \propto c_{l p} \cdot \Delta \rho^{2} \cdot P(q) \cdot S(q)
$$

For SAXS data, spherical model and Hardsphere (HS) model were used as the form factor and structure factor, respectively.[1] In addition, the power law was also used to describe the slope at the low q region. The best fitting procedure was performed using SasView.

Spherical model (Form factor).

The intensity of spherical model can be expressed

$$
I(q)=\frac{\text { scale }}{V}\left[3 V\left(\rho-\rho_{s}\right) \cdot \frac{\sin (Q R)-Q R \cos (Q R)}{(Q R)^{3}}\right]^{2}+\text { background }
$$

where V is the volume of a particle, r is the radius of sphere. ρ and ρ_{s} are the scattering length density (SLD) of particles and solvent, respectively.

Hard-sphere model (structure factor)

This model is to describe the interparticle structure factor for spherical particles interacting through hard sphere interactions. The hardsphere model uses the Percus-Yevick closure where the interparticle potential is

$$
U(r)=\left\{\begin{array}{ll}
\infty & r<2 R \\
0 & r \geq 2 R
\end{array},\right.
$$

where r is the distance from the center of the sphere of a radius R

Power Law

We utilized this model to describe the slope in the low q region. The scattering intensity, $\mathrm{I}(q)$, can be expressed as

$$
I(q)=\text { scale } \cdot q^{-n}+\text { background }
$$

where n is the power law exponent.

References

[1] A. Guinier, G. Fournet, K.L. Yudowitch, Small-angle scattering of X-rays, 1955.

